
Finite Field is denoted by Fp (or rarely Zp), when p is prime.
Fp={0, 1, 2, 3, …, p-1}; where addition, multiplication, substraction and division operations are

performed mod p: +mod p, -mod p, •mod p, :mod p.

Cyclic Group: Zp* = {1, 2, 3, …, p-1}; •mod p, :mod p.

Let us consider abstract EC defined in the plane XOY with coordinates in finite field
and Fp = {0, 1, 2, …, p-1} and expressed by the equation:
 y2 = x3 + ax + b mod p.
EC points are computed by choosing coordinate x and computing coordinate y2.
To compute coordinate y it is needed to extract root square of y2.

Elliptic Curve Cryptosystem - ECC

In Figures below parabola and elliptic curve (EC) are presented in the plane XOY of real numbers and
are expressed by the equations:

y2 = x y2 = x3 + ax + b

The line crossing any two points in EC intersects with the third point in the curve.1.
The curve is symmetric with respect to axis x since there is y2 in the left side of EC equation. 2.

In EC the point addition operation is defined using two facts:

The points in EC forms an algebraic additive group with a very special addition operation between
points illustrated in EC figure.
Then according to the algebraic group definition the addition of any two points must yield the third
point in elliptic curve as a line crossing these two points intersection with the EC.
Question: where line crossing -T and T intersects the third point in EC?
Answer: at the infinity.
Paradox: this infinity is named as a zero of EC group since any additive group must have a neutral
element called zero: T + (-T) = 0, and T + 0 = T.

116_002 ECC

 116_002 ECC Page 1

To compute coordinate y it is needed to extract root square of y2.
 y = ±√y2 mod p.
Notice that from y2 we obtain 2 points in EC, namely y and -y no matter computations are performed
with integers mod p or with real numbers.
Notice also that since EC is symmetric with respect to x-axis, the points y and -y are symmetric in EC.
Since all arithmetic operations are computed mod p then according to the definition of negative points
in Fp points y and -y must satisfy the condition

 y + (-y) = 0 mod p.
Then evidently
 y2 = (-y)2 mod p.
For example: p = 11
-2 mod 11 = 9
22 mod 11 = 4 & 92 mod 11 = 4
>> mod(9^2,11)
ans = 4

The positive and negative coordinates y and -y in EC in the real numbers plane XOY are presented in Fig.

The positive and negative numbers for p=11 are presented in table .

y mod 11 (-y) mod 11

1 odd even -1=10

2 even odd -2=9

3 odd even -3=8

4 even odd -4=7

5 odd even -5=6

6 even odd -6=5

7 odd even -7=4

8 even odd -8=3

9 odd even -9=2

10 even odd -10=1

Notice that performing operations mod p if y is odd then -y is and vice versa.

ElGamal Cryptosystem (CS) Elliptic Curve Cryptosystem (CS)

PP=(strongprime p, generator g);
p=255996887; g=22;

PP=(EC secp256k; BasePoint-Generator G; prime p; param. a, b);

Parameters a, b defines EC equation y2=x3+ax+b mod p over Fp.

PrK=x;
>> x=randi(p-1).

PrKECC=z;
>> z=randi(p-1).

PuK=a=gx mod p. PuKECC=A=zG.

Alice A: x=1975596; a=210649132; Alice A: z=…..; A=(xA, yA);

 116_002 ECC Page 2

This property allows us to reduce bit representation of PuKECC=A=zG =(xA, yA);
In normal representation of PuKECC it is needed to store 2 coordinates (xA, yA) every of them having
256 bits. For PuKECC it is required to assign 512 bits in total.
Instead of that we can store only xA coordinate with an additional information either coordinate yA is
odd or even.
The even coordinate yA is encided by prefix 02 and odd coordinate yA is encoded by prefix 03.
It is a compressed form of PuKECC.
If PuKECC is presented in uncompressed form than it is encoded by prefix 04.

Imagine, for example, that having generator G we are computing PuKECC=A=zG =(xA, yA) when z=
Please ignore that after this explanation since it is crasy to use such a small z. It is a gift for adversary
To provide a search procedure.

Then PuKECC is represented by point 8G as depicted in Fig. So we obtain a concrete point in EC being
either even or odd.
The coordinate yA of this point can be computed by having only coordinate xA using formulas presented
above and having prefix either 02 or 03.

EC: y2=x3+ax+b mod p

Let we computed PuKECC=A=(xA, yA)=8G .
Then (yA)2 = (xA)3+a(xA)+b mod p is computed.
By extracting square root from (yA)2 we obtain 2 points:

8G and -8G with coordinates (xA, yA) and(xA, -yA).
According to the property of arithmetics of integers mod p
either yA is even and -yA is odd or yA is odd and -yA is even.
The reason is that yA+(-yA)=0 mod p as in the example
above when p=11.
Then we can compress PuKECC representation with 2
coordinates (xA, yA) by representing it with 1coordinate xA

and adding prefix either 02 if yA is even or 03 if yA is odd.

Alice A: x=1975596; a=210649132; Alice A: z=…..; A=(xA, yA);

 116_002 ECC Page 3

Elliptic Curve Digital Signature Algorithm - ECDSA
ECDA Public Parameters: PP = (EC, G, p), G=(xG, yG); ElGamal CS Public Parameters: PP = (p, g)

1<xG<n, 1<yG<n, when n is the number of EC points.
n - is an order (number of points) of EC, i.e. according to secp256k1 standard is equal to p: n=p;
|n|=|p|=256 bits.
PrKA=z <-- randi; z< n, max|z|<=256 bits.
PuKA=z*G=A=(xA, yA); max|A|=2•256=512 bits.

Key generation
1.Install Python 3.9.1.
2.Launch script Packages for joining a libraries.
3.Launch file ECC.
4.If window is escaping, then open hiden windows
 in icon near the Start icon.

Ethereum signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use keccak256 algorithm of 256 bit length of h-value.
h = H(M)=keccak256(M);

You can sign messages entirely off-chain in the browser, without interacting with the Ethereum network.

Signing and Verifying Ethereum Signatures – Yos Riady · Software Craftsman

 116_002 ECC Page 4

https://yos.io/2018/11/16/ethereum-signatures/

111.ECDSA-Python

The eth_sign method calculates an Ethereum specific signature with:
eth_sign(keccak256("\x19Ethereum Signed Message:\n" + len(message) + message))).
The prefix to the message makes the calculated signature recognisable as an Ethereum specific
signature.>

You can sign messages entirely off-chain in the browser, without interacting with the Ethereum network.
Signing and the verification of ECDSA-signed messages allows tamper proof communications outside of the
blockchain.
We can call the via an Ethereum eth_sign method client such as web3.js:

// Create a SHA3 hash of the message 'Apples'
const messageHash = web3.sha3('Apples');
// Signs the messageHash with a given account
const signature = await
web3.eth.personal.sign(messageHash,
web3.eth.defaultAccount);

sigma=sign(Prk, h)

http://crypto.fmf.ktu.lt/xdownload/

Iš praeito pusmečio siuntimo, kam galėtų reikėti patalpinau į we transfer: https://we.tl/t-V0FlMXQ2fz.

 116_002 ECC Page 5

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign
http://crypto.fmf.ktu.lt/xdownload/
https://we.tl/t-V0FlMXQ2fz

Signature creation for message M
Signature is formed on the h-value h of Hash function of M.
Recommended to use SHA256 algorithm

0x686a0f209c1bc05617f8b540afbd5a49651453ee48b472256e6537d2b9684513 PrK = z

 fba40304078e170874e204afd87ff6d9f15f0c58b81a60e59e0a3104063c0667 PuKx = xA

 58183c3388ddf828e81e23f1d3265ef69f52d39a837eed9d91e4c2d17d15f8c1 PuKy = yA

 1 is odd number, prefix=03

030xfba40304078e170874e204afd87ff6d9f15f0c58b81a60e59e0a3104063c0667

Private Key of EC Cryptosystem (ECC) is PrK ECC=z, where z is secret integer generated at random, i.e. z
← randi.

Public Key of ECC is PuKECC=A=zG=(xA, yA),

where  means generator G multiplication by integer z or this means z-times addition of point G in EC
according to points addition rule defined above in Fig.

0xb20bcc56bebccc51557e2d4b32e1c99604dca974b05df7c91d057f8d202770d1

2d9c5a458b25fc28e9f0591f4dc397982130aee2844af82bc5e6108608246a0f
36095891fe2c96bb1a429794f56a886b125ab29c0f381826beb

030x2d9c5a458b25fc28e9f0591f4dc397982130aee2844af82bc5e6108608246a0f

 116_002 ECC Page 6

h = H(M)=SHA256(M);1.

i <-- randi; |i|≤ 256 bits;2.
R = i*G = i*(xG, yG) = (xR, yR);3.
r = xR mod p; 4.

s = (h + z • r) • i-1 mod p; |s|≤ 256 bits; // Since p is prime, then exists i-1 mod p.5.
 // >> i_m1=mulinv(i,p) % in Octave

Sign(PrKECC=z, h) = ϭ = (r, s) 6.

Calculate u1 = h • s-1 mod p and u2 = r • s-1 mod p 1.

Calculate the curve point V = u1*G + u2*A=V(xV, yV) 2.

The signature is valid if R=V; r=xV=xR mod p.3.

Signature vrification: Ver(PuK, ϭ, h)

ECDSA ElGamal Signature

h = H(m); h = H(m);

i randi;
Compute i-1 mod p

i randi; gcd(i, p-1)=1
Compute i-1 mod (p-1)

R = i*G = i*(xG, yG) = (xR, yR);

r = xR mod p; |i|≤ 256 bits;

r=gi mod p;

s=(h+z•r)i-1 mod p; |s|≤ 256 bits; s=(h-x•r)i-1 mod (p-1);

s-1=(h+z•r)-1i mod p; h=xr+is mod (p-1).

Sign(PrKECC=z, h) = (r, s) = ϭ; Sign(PrK=x, h) = (r, s) = ϭ;

ECDSA Verification ElGamal Signature Verification

Compute u1=h•s-1 mod p and

 u2=r•s-1 mod p;

Compute: u1= gh mod p;
and u2= arrs mod p

Compute R = u1*G + u2*A = (xR, yR); Signature is valid if: u1= u2

The signature is valid if r=xR mod p.

Correctness:
R=u1*G + u2*A
From the definition of the Public Key A=z*G we have:
R=u1*G + (u2•z)*G
Because EC scalar multiplication distributes over addition we have:
R=(u1 + u2•z)*G

ϭ

Schnorr Signature

h = H(m);

i randi;

r=gi mod p;

s=(i+x•h) mod (p-1);

Sign(PrK=x, h) = (r, s) = ϭ;

Schnorr Signature Verification

Compute: u1= gs mod p.
and u2= rah mod p

Signature is valid if: u1= u2

Let u, v are integers < p.

Property 1: (u + v)P = uP ⊞ vP replacement to --> (u + v)P = uP + vP

Property 2: (u)(P ⊞ Q) = uP ⊞ uQ replacement to --> u(P + Q) = uP + uQ

Important identity used e.g. in Ring Signature:

(t-zc)G+cA = tG-zcG+cA = tG-c(zG)+cA = tG-cA+cA = tG mod p.

 116_002 ECC Page 7

Public-key cryptography is based on the intractability of certain mathematical problems.
Early public-key systems are secure assuming that it is difficult to factor a large integer
composed of two or more large prime factors.
For elliptic-curve-based protocols, it is assumed that finding the discrete logarithm of a
random elliptic curve element with respect to a publicly known base point (generator) is
infeasible: this is the "elliptic curve discrete logarithm problem" (ECDLP).
The security of elliptic curve cryptography depends on the ability to compute a point
multiplication and the inability to compute the multiplicand given the original and
product points.
The size of the elliptic curve determines the difficulty of the problem.
The primary benefit promised by elliptic curve cryptography is a smaller key size,
reducing storage and transmission requirements, i.e. that an elliptic curve group could
provide the same level of security afforded by an RSA-based system with a large
modulus and correspondingly larger key: for example, a 256-bit elliptic curve public key
should provide comparable security to a 3072-bit RSA public key.
The U.S. National Institute of Standards and Technology (NIST) has endorsed elliptic
curve cryptography in its Suite B set of recommended algorithms, specifically elliptic

R=(u1 + u2•z)*G
Expanding the definition of u1 and u2 from verification steps we have:
R=(h•s-1 + r•s-1•z)*G
Collecting the common term s-1 we have:
R=[(h + r•z)•s-1]*G
Expanding the definition of s from signature creation we have:
R=[(h + r•z)•(h + r•z)-1•i]*G=i*G.

Since the inverse of an inverse is the original element, and the product of an element's
inverse and the element is the identity, we are left with R = i*G = (xR, yR); r=xR.

Ethereum for signing transactions is using secp256k1 EC together with keccak256 H-function.
secp256k1 has co-factor=1. When the cofactor is 1, everything is fine.
The signature of transaction in Ethereum is placed in the varaibles v, r, s.

Variable v represents the version of signature and (r, s)=ϭ.

Doubling points in EC

A=11*G
11= 10112 = 1·23 + 0·22 + 1·21 + 1·20 = 8 + 2 +1 = 11.
11= 10112 = 2·2·2 + 0·2·2 + 1·2 + 1 = 2·2·2 + 2 + 1 // *G

A= 2*(2*(2*G)) ⊞ 0*G ⊞ 2*G ⊞ 1*G
A= (8*G) ⊞ 2*G ⊞ G.

 PrK ECC=z < n < 2256; PuK ECC=A=(ax, ay);

|PrK ECC=z|=256 bits; |PuK ECC=A|=512 bits.

 116_002 ECC Page 8

https://en.wikipedia.org/wiki/Intractability_(complexity)#Intractability
https://en.wikipedia.org/wiki/Computational_hardness_assumption
https://en.wikipedia.org/wiki/Integer_factorization
https://en.wikipedia.org/wiki/Discrete_logarithm
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication
https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Level_of_security
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm

curve cryptography in its Suite B set of recommended algorithms, specifically elliptic
curve Diffie–Hellman (ECDH) for key exchange and Elliptic Curve Digital Signature
Algorithm (ECDSA) for digital signature.
The U.S. National Security Agency (NSA) allows their use for protecting information
classified up to top secret with 384-bit keys.[2]

However, in August 2015, the NSA announced that it plans to replace Suite B with a new
cipher suite due to concerns about quantum computing attacks on ECC.[3]

https://en.wikipedia.org/wiki/SHA-2

SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by
the United States National Security Agency(NSA).[3] Cryptographic hash functions are
mathematical operations run on digital data; by comparing the computed "hash" (the
output from execution of the algorithm) to a known and expected hash value, a
person can determine the data's integrity.

SHA-2 includes significant changes from its predecessor, SHA-1. The SHA-2 family
consists of six hash functions with digests (hash values) that are 224, 256, 384 or 512
bits: SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, SHA-512/256.

 116_002 ECC Page 9

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/NSA_Suite_B
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie%E2%80%93Hellman
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/Classified_information_in_the_United_States
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-2
https://en.wikipedia.org/wiki/Quantum_computing
https://en.wikipedia.org/wiki/Elliptic-curve_cryptography#cite_note-nsaquantum-3
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/SHA-2#cite_note-3
https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/Cryptographic_hash_function#message_digest

